发布时间:15-05-28 16:55分类:技术文章 标签:便携式烟气分析仪 随着我国对大气污染防治的力度逐年加大,在国内已经逐渐建立起对污染物的排放监测网络,连续污染物排放监测系统CEMS系统的安装总数也接近两万套。如何有效保证监测系统的可靠运行,监测数据真实有效成为了环保和监测部门的重要关注点。 烟气分析仪大量应用于监测系统的比对和校验,以保证监测结果的可靠性。实际的应用中大多数监测系统已经采用了非分光红外原理的气体分析方法,但便携式的烟气分析仪仍然沿用电化学的测量原理。不同原理测试方法的相关性问题以及电化学原理仪器的抗干扰等问题已经在实际应用中凸显出来,使用便携红外烟气分析仪替代电化学仪器已经成为了监测比对方法的必然趋势。 测量方法及其原理 主流的烟气分析仪大多采用电化学和非分光红外的测试原理。电化学的仪器已经由进口仪器转变为以国产仪器为主,但高端的应用仪器仍然是以德图或凯恩为代表的进口仪器为主;红外的仪器近年来随着自主知识产权的红外技术在国内逐渐推广,也开始了批量国产化,并小型化,*终实现在便携烟气分析仪中的应用。 电化学测试原理 电化学测试方法又称为定电位电解法,是*对二氧化硫的标准测定方法之一。(HJ/T 57-2000《固定污染源排气中二氧化硫的测定定电位电解法》)。其核心器件电化学传感器的结构如图。 电化学传感器的结构 二氧化硫(SO2)扩散通过传感器渗透膜,进入电解层,在恒电位工作电极上发生氧化反应;由此产生极限扩散电流,在一定范围内,其电流大小与二氧化硫浓度成正比。 电化学传感器还可广泛应用于一氧化氮、氯化氢、硫化氢等气体的测定。由于传感器的制作对工艺和材料的特殊要求,目前仍然主要依赖进口。 非分光红外测试原理 非分光红外气体测试方法已经广泛应用于工业过程和环境监测等领域。其核心部件红外传感器根据应用特点的不同,又可分为双光束、微流、微音器等不同类型。固定污染源监测系统中大量使用的是微流红外传感器,可实现对二氧化硫、一氧化氮、一氧化碳等主要污染物的测定。近年来,环保等相关部门也开始着手非分散红外测定方法的标准制定,以规范测试方法的应用。红外微流传感器的结构如图 微流红外传感器的结构 微流红外传感器技术的工作原理为:红外光源①发出的红外光,经过切光器②调制频率后,进入测量气室④;由于二氧化硫等异种原子构成的分子对红外光具有吸收特性,若测量气室④中存在上述气体,则进入测量气室的部分红外光会被吸收,未被吸收的红外光进入检测器⑤。检测器⑤由前气室、后气室、微流传感器⑥组成,前、后气室充满待测组分的气体。在红外光的作用下,检测器前、后气室中的气体发生膨胀;由于存在膨胀差异,会导致前、后气室之间产生微小的流量;微流传感器⑥检测到该流量后,产生交流电压信号,信号经处理后得到气体的浓度。 学分析仪的应用分析 电化学分析仪具有小型、轻便、快捷等优点,在我国应用较多。但国内传感器制作技术有限,大部分仍需进口传感器,使用成本较大。实际使用中电化学仪器还会普遍存在取样流量、气体交叉干扰以及前处理等方面的问题。 流量对电化学仪器的影响 采用电化学传感器设计的烟气分析仪,不论是国产仪器,还是国外进口仪器,在使用过程中经常碰到“测不准”问题,即在实验室测试标准气体是好的,到了现场却测不准。这是因为,电化学传感器对流速的变化极为敏感。通常电化学类烟气分析仪的测试读数与采气流速呈“正相关”。 HJ/T57-2000《固定污染源排气中二氧化硫的测定电位电解法》标准特别强调:“采气流速的变化直接影响仪器的测试读数”。 *环境监测总站《火力发电业建设项目竣工环境保护验收监测技术规范》中也写道:“定电位电解法监测仪器对采样流量要求甚严,监测数据的显示与采样流量的变化成正比,当仪器采样流量减小时(例如烟道负压大于仪器抗负压能力),监测数据明显变小。在使用时为了减少测定误差,仪器的工作流量应与标定(校准)时的流量相等”。 而烟道内烟气,既有正压工况的,也有负压工况的,甚至存在压力忽大忽小的变化工况。极端情况下,有些烟道还存在很大的负压(如宝钢烧结机头负压=20kPa)。针对大多数烟道负压的情况居多,很多电化学烟气分析仪配置了大功率的取样气泵。这一措施仅能避免抽不出气的问题,仍然改变不了“负压降低采气流速”的问题。因此,不管你是大功率泵,还是小功率泵,只要烟道有负压,检测示值一定偏低。换句话说,只要你现场采气流速不等于实验室标定流速,测试示值肯定不准。 而现场测试过程中,流速对测量结果的影响往往难以暴露,只有当测试数据明显偏离时才会引起注意。所以对仪器操作人员提出了较高的要求,必须严格控制仪器标定和采样的流量,尽量保持一致。 气体交叉干扰对电化学仪器的影响 电化学传感器通过设置不同的电极电位,使得传感器对应某一特定气体敏感,从而达到测定的目的。但对于电极电位相似的气体,会产生交叉干扰。 实际的应用中,燃油炉、燃气炉、水泥厂的监测过程中会出现SO2、NO测定值明显偏低或检测无的情况,主要是因为排放烟气中NO2的干扰原因。而在测定锅炉、水泥窑、烧结机烟气时,往往会出现SO2测定值明显偏大的情况,主要是因为排放烟气中CO的干扰原因。 虽然这些气体的交叉干扰已知,但由于干扰值的非线性和非重复性,电化学仪器也无法对干扰值进行有效补偿。所以当监测数据异常时,还必须选用其他测试方法重新测试。

发布时间:15-05-29 17:35分类:技术文章 标签:便携式烟气分析仪 预处理对电化学仪器的影响 电化学仪器的前处理普遍比较简单,主要由取样探针、取样管和过滤器组成,一般在不采用湿法脱硫的烟道气的含湿量不超过3%,而采用湿法脱硫后的烟气含湿量往往大于5%,如果脱硫设备脱水不好,烟气含湿量可高达12%。高含湿量的烟气进入取样管路后,由于温度下降超过露点温度,取样管路将产生冷凝水,并会吸收一部分烟气中的SO2,导致进入传感器的SO2浓度降低,造成监测结果出现负偏差甚至无。也有少数高端的电化学仪器采用了加热探针、伴热管路以及冷凝除水的前处理系统来避免冷凝水对SO2的影响,但成本过高,不利于推广。长期使用仪器后,由于烟气湿度的影响,在电化学传感器的渗透膜表面会形成结露水;结露水会影响气体分子的渗透,从而导致测量结果偏低,甚至测试不到目标污染物。所以电化学仪器每次使用前应抽取一段时间干燥清洁的空气吹扫传感器,以保证测量准确。此外,电化学传感器使用寿命有限,在超过量程测试时还容易出现“中毒”现象,导致传感器失效。基于这些原因,便携电化学烟气分析仪的使用范围受到了一定的限制,尤其在类似背景气体复杂、高湿低浓度的测试条件下,已经不能满足监测或比对的要求。 红外分析仪的应用分析 红外原理的气体分析仪在污染源监测系统上的广泛应用,已经替代了电化学原理的仪器。随着国内自主知识产权的红外技术的开发成功,使得便携式红外烟气分析仪的普及成为了必然的趋势。 红外分析仪具有抗干扰能力强、受流量影响小、寿命长等特点,克服了电化学分析仪在应用中出现的问题。但在实际中还需要考虑以下因素的影响。 水分对红外仪器的影响 由于烟气排放中的水分,尤其是气态水是影响二氧化硫和氮氧化物测定的主要干扰物(参考图,SO2、NO、H2O红外吸收光谱图),直接影响了仪器的测量精度。这也是为什么部分红外气体分析仪在实验室条件下使用标准气检定时合格,在现场测试却达不到要求的主要原因。 SO2、NO、H2O红外吸收光谱 虽然便携红外分析仪大多采用了加热取样、冷干脱水的预处理方法,以防止水分冷凝和气态水分干扰。但事实上烟气中的水分无法完全去除,而且由于排放工况的变化和冷凝效率的原因,冷凝器的出口露点往往也存在波动。在高湿低浓度条件下,水分的干扰甚至超过了仪器本身的测量误差,干扰误差尤为明显。 消除水分干扰误差的方法通常有两种:一是采用脱水装置,二是设置水分传感器并进行软件补偿。采用脱水装置的方法有采用高效干燥剂如无水高氯酸镁,或者采用NAFION膜式干燥管。其主要问题在于需要经常更换,人为增加了运行维护成本。仪器生产厂家也有可能在检定时使用脱水装置,但是在运行时为减少运行费用不采用该装置,造成实际运行中的性能改变,导致仪器监测数据不确定度增加。 采用水分传感器和软件补偿的方法一般只修正零点的水分干扰,且低端的分辨率较低。对于同时含水和含SO2,NO的气体的修正精度很差。此外对于NO分析仪,由于在相同的气室长度下,NO的分辨率低于H2O的分辨率,采用水分传感器修正的方法对NO测定会造成很大的系统误差。 *新的测试技术是在在传统微流红外传感器的基础上增加了特殊调水机构。它是通过将不同温度下的饱和空气依次通入红外传感器,通过调节调水机构,使得含有非冷凝水的气体与零气的信号一致,通过硬件调节及软件线性修正,可*大限度消除H2O(气)对SO2、NO的干扰。进一步实验结果还表明,通过该方法调节后的传感器可以满足各种水分含量条件下的水分干扰消除,干扰的程度可控制在5ppm以内。 为满足类似高湿低浓度的测试条件,便携红外烟气分析仪应*大限度降低水分(气)干扰的影响,以提高实际测试精度。 HC化合物对红外仪器的影响 除了水分干扰以外,碳氢化合物,如焦化厂排放的气态污染物中存在未燃尽的CH4、C2H6、C2H4等对于SO2的测量结果会存在很大干扰。 针对可能对SO2测定产生的干扰,在红外微流传感器的前端设置可专门吸收HC波长的气体吸收过滤室,*大限度消除大部分HC化合物对SO2测量结果的影响。 在排放的碳氢化合物组成复杂的特殊条件下,如果需要完全消除HC对SO2的影响,还可以考虑在烟气流路中增加HC物理化学过滤器,以保证实际测试的精度。 测试分辨率对红外仪器的影响 随着污染物治理的加强,大量脱硫、脱硝装置得以应用,污染物实际的排放浓度也越来越小。这对便携红外烟气分析仪的测试分辨率也提出了更高的要求。 很多仪器为提高零点稳定性,会采用不同的算法,以保证减小零点的波动;还有如前所述,为了补偿水分的干扰影响,也会采用零点补偿方式。这样的直接结果*是在进行零点附近的低浓度测试时仪器没有反应。 结论 烟气分析仪在实际应用中反映的流速、干扰、水分冷凝等问题已经能够明显限制了其在监测和比对测试中的应用。采用红外原理的便携烟气分析仪克服了电化学仪器的主要缺点,开始逐渐取代电化学仪器。为了解决红外测试在应用中的问题,便携红外烟气分析仪还应该解决水分干扰、HC干扰以及高分辨率等问题,以提高便携红外烟气分析仪的适用性,保证测试结果的准确可靠。

图片 1

图片 2

产品概述

如今,雾霾已然成为了严重影响我国居民生产生活的“心肺之患”。燃煤是造成雾霾的主要原因,而我国50%的燃煤是用于发电,因此,要求电厂和大型燃煤工厂除尘、脱硫、脱硝也就成了环保部长期以来治理烟气的主要发展方向。烟气脱硫、脱硝工艺使空气污染因子中具有毒性的二氧化硫、氮氧化物成分得以减少,无疑是积极的,也是必须的。这也是为什么国内雾霾频发,但并没有像当年的伦敦那样发生毒雾夺万人性命惨剧的原因所在。

天津地区出现地标DB12/810-2018 超低浓度烟气 红外烟气检测仪

青岛动力伟业环保设备有限公司生产的动力6026型红外烟气检测仪是采用非分散红外吸收法为核心的新型产品,产品采用进口长光程多组分检测器件,主要用于固定污染源排放中NOx、SO2、CO、O2、CO2等烟气成分的分析,尤其适合低温、高湿、低浓度排放等现场监测,与使用电化学传感器测量方法的仪器相比,具有测量精度高、响应时间快、抗干扰能力强、使用寿命长等特点。

典型电厂锅炉烟气处理流程是脱硝在前脱硫在后,脱硝后需要检测如NO、NO2、O2及NH3等;而脱硫前需要检测SO2、SO3;O2、CO2;粉尘等。按照常规的做法就是在脱硝出口安装一套CEMS,除尘器后进脱硫塔前安装一套CEMS,这样做的好处是烟气采样数据上传时间短,容易实现脱硝的自动控制。以尿素法、LIFAC工艺等半干法脱硫脱氮系统为例,其工艺是把碱性物质(石灰石、氢氧化钠、碳酸氢钠等等)的溶液或尿素溶液喷入炉膛、烟道或喷雾洗涤塔内进行脱硫脱氮。这类系统的脱硫、脱硝效率就主要取决于烟气中SO2和NOx的体积比、反应温度、吸收剂的粒度和停留时间。

执行标准

适用范围

在CEMS系统中,抽取法结合红外气体分析技术是主流,微流红外技术则是红外气体分析技术的主要发展趋势。传统的微音电容传感器检测红外光声信号的方法存在受水分干扰、工艺复杂、抗震性差等缺点;相较而言,微流红外探测器具有工艺简单、测量准确、抗震性好等多种优势,目前在进口红外烟气分析仪中普遍使用。值得一提的是,国内也有锐意自控这种自主研发微流红外气体分析技术并将其运用到烟气分析仪的科技创新企业。

◆ JJG968-2002 《烟气分析仪》

应用于火力发电厂、各种工业窑炉、民用采暖锅炉、垃圾焚化厂、钢铁厂、水泥厂及其它工业过程中产生污染气体的烟气监测;

微型红外传感器

◆ HJ/T397-2007 《固定源废气监测技术规范》

适用于环境监测、节能监察、能效测评以及环境科学研究等部门的环保对比验收、能效测试评价、脱硫脱硝研究,主要测量锅炉烟气中SO2、NO、CO、CO2、O2的体积浓度,烟气温度、压力、流速等参数,并统计烟气的中的SO2、NO、NO2、CO排放浓度、折算浓度和排放总量的测定。

在实际应用中,解决好烟气分析问题是脱硫、脱硝系统高效稳定运行的保障。下文将结合锐意自控的红外烟气分析仪Gasboard-3000,介绍微流红外技术在烟气脱硫、脱硝效率监测中应用的挑战及对策,并阐述经过改进的微流红外传感器在烟气检测中的主要技术优势。

◆ HJ 629-2011 《固定污染源废气 二氧化硫的测定 非分散红外吸收法

执行标准

红外烟气分析仪Gasboard-3000

◆ HJ 692-2014 《固定污染源废气 氮氧化物的测定 非分散红外吸收法

JJG968-2002 《烟气分析仪》

1、消除温度对传感器信号的影响

动力6026型红外烟气检测仪产品概述

HJ/T397-2007 《固定源废气监测技术规范》

环境温度的变化对于红外气体分析仪检测过程存在较大的影响,它将直接影响红外光源的稳定,影响红外辐射的强度,影响测量气室连续流动的气样密度。另一方面,为减少其他组分对SO2、NO的影响,红外烟气分析仪在微流红外探测器的前端设有窄带红外滤光片,这种滤光片是一种多层的半导体镀膜,温度升高会使得滤光片朝长波方向偏移,从而进一步影响SO2、NO的测量结果。特别是在北方昼夜温差较大的地域,即使设备房安装了空调,也会存在一定的温差。大多数红外烟气分析仪往往采用温度修正的方法,来解决因环境温度变化导致测量结果变化的问题,但这种方法只能解决部分问题,并不能完全消除由温度变化所带来的误差。

青岛动力伟业环保设备有限公司生产的动力6026型红外烟气检测仪是采用非分散红外吸收法为核心的新型产品,产品采用进口长光程多组分检测器件,主要用于固定污染源排放中NOx、SO2、CO、O2、CO2等烟气成分的分析,尤其适合低温、高湿、低浓度排放等现场监测,与使用电化学传感器测量方法的仪器相比,具有测量精度高、响应时间快、抗干扰能力强、使用寿命长等特点。

HJ 629-2011 《固定污染源废气 二氧化硫的测定 非分散红外吸收法

不同温度和气体浓度下的NO传感器响应曲线

产品特点

HJ 692-2014 《固定污染源废气 氮氧化物的测定 非分散红外吸收法

怎样最大限度的消除温度变化对测量结果带来的影响呢?Gasboard-3000内部设置有温控装置及超温保护电路,通过对包括滤光片在内的整个传感器进行整体55℃恒温处理,同时配合窄温度范围温度修正的方法,为微流红外气体传感器设置了“双重保险”:当外部环境温度变化时,由于传感器处于恒温装置内部,因此受温度变化影响极小;即使有一定的温度波动,也可以通过温度修正来减少温度漂移,从而保证测量结果的准确性。

嵌入式单板机,Windows 7操作界面,动态显示气体吸收曲线;

产品特点

2、消除水分对SO2、NO测量的影响

烟尘过滤采用二级过滤器,减少测量误差;

嵌入式单板机,Windows 7操作界面,动态显示气体吸收曲线;

无论是半干法脱硫还是湿法脱硫,脱硫后的烟气温度都比较低且含有大量水分。水分是影响二氧化硫和氮氧化物测量的主要干扰物,水分干扰直接影响了仪器的测量精度。这也是为什么部分红外气体分析仪在实验室条件下使用标准气检定时合格,在工业现场测试却达不到要求的原因。

直接测量烟气中的O2、Ts、Pt、Pd、Qsnd;

烟尘过滤采用二级过滤器,减少测量误差;

通常CEMS系统取样中采取冷干法脱除水分,以防止水分冷凝和水分干扰,但由于排放工况的变化和冷凝效率的原因,冷凝器的出口露点往往存在波动。在高湿低浓度条件下,水分的干扰往往超过了仪器本身的测量误差,干扰误差尤为明显。

冷凝法测量烟气湿度,数据可靠。

直接测量烟气中的O2、Ts、Pt、Pd、Qsnd;

Gasboard-3000在传统微流红外传感器的基础上,增加了调水机构。它通过将不同温度下的饱和空气依次通入红外传感器,通过调节调水机构,使得含有非冷凝水的气体与N2的信号一致。同时通过硬件调节及线性修正,来消除H2O对SO2、NOx的干扰。实验表明,通过该方法调节后的传感器可以满足各种水分含量条件下的水分干扰消除,干扰的程度可控制在5ppm以内。

直接测量烟气中的O2、Ts、Pt、Pd、Qsnd;

冷凝法测量烟气湿度,数据可靠。

3、消除HC化合物对SO2测量的影响

采用先进的微流红外气体传感器技术,精度高、寿命长、无交叉干扰;

直接测量烟气中的O2、Ts、Pt、Pd、Qsnd;

除了水分干扰以外,碳氢化合物如焦化厂排放的气态污染物中存在未燃尽的CH4、C2H6、C3H8等组分,也会对SO2的测量结果带来很大干扰。如下图所示,SO2的吸收峰波段为7.28~7.62μm,在该波段CH4的吸收干扰最大,其次是C3H8和C2H6。

采用通用便携式烟气预处理器,体积小、重量轻,提高整机便携性。

采用先进的微流红外气体传感器技术,精度高、寿命长、无交叉干扰;

为减少HC对SO2测量的影响, Gasboard-3000在传统的微流红外传感器基础上,设计了带CH4滤波气室的SO2传感器。实验表明,通入4000ppm的CH4,碳氢化合物对SO2的干扰不超过4ppm。

采用多组分高精度NDIR测量原理,可测量SO2、NO、CO CO2和O2等,可同时测量7种气体;

采用通用便携式烟气预处理器,体积小、重量轻,提高整机便携性。

带CH4滤波气室的SO2传感器

分析模块不含任何运动器件,可靠性好;

采用多组分高精度NDIR测量原理,可测量SO2、NO、CO CO2和O2等,可同时测量7种气体;