发布时间:17-06-29 17:45分类:技术文章 标签:紫外可见分光光度计,分光光度计,紫外可见分光光度计的构造原理 紫外及可见光分光光度计的可测波长范围为200一1000 nm,也有波长范围为200- 400 nm的紫外分光光度计,但前者较为普遍。紫外及可见光分光光度计的构造原理与可见光分光光度计(如721型分光光度计)相似。由于玻璃吸收紫外光,因此单色器要用石英棱镜或光栅。(一)光(light source)有钨丝灯及氢灯(或氛灯)两种。可见光区(360一1000 nm)使用钨丝灯;紫外光区 (200一360 nm)则用氢灯或氛灯。(二)吸收池(absorption cell)由于玻璃吸收紫外光.吸收池要用石英材质。(三)检浏器(detector)检侧器使用两只光电管,一为氧化艳光电管,用于625一1000 nm波长范围;另一只是锑艳光电管,用于200一625 nm波长范围。光电倍增管亦为常用的检测器,其灵敏度比一般的光电管高2个数量级。图1是紫外及可见光分光光度计原理图。紫外及可见光分光光度计分单光束和双光束型。单光束型仪器使用前一般需要预热以使仪器稳定,缺点是难以消除与补偿由于光源与电子测量系统不稳定等所引致的误差。双光束型仪器能够消除与补偿由于光源、电子测量系统不稳定等所引致的误差,所以其测盘的精确度*提高了。双光束型仪器的工作原理如图2所示。其工作原理可描述为:由光源(钨丝灯氘灯,根据波长而变换使用)发出的光经人口狭缝及反射镜反射至石英棱镜或光栅,色散后经过出口狭缝而得到所需波长的单色光束。然后由反射镜反射至由马达转动的调制板及扇形镜上。当调制板以一定转速旋转时,时而使光束通过,时而挡住光束,因而调制成一定频率的交变光束。之后扇形镜在旋转时,将此交变光束交替地投射到参比溶液(空白溶液)及试样溶液上,后面的光电倍增管接受通过参比溶液及为试样溶液所减弱的交变光通量,并使之转变为测量信号。此信号经放大并用解调器分离及整流,然后以电位器自动平衡此两直流信号的比率,并依照记录器记录得到吸收曲线。

发布时间:14-12-17 17:18分类:技术文章 标签:紫外可见分光光度计 紫外可见分光光度计的机理: 尽管我们可以通过感知物质的颜色来预测总的吸收波长,但无法进行精确的波长分析,而且还可能存在着个体差异,另外人眼也无法观测到紫外线区。而在紫外可见分光光度计的系统中不存在个体的差异,原因是在分光光度计中使用人造光源来代替白光,光不是直接照射在物体上的,而是通过棱镜或衍射光栅将白光分成许多颜色,然后每种颜色(单色光)分别扫描物体来测量物质的吸收波长。 紫外可见分光光度计的基本构造: 分光光度计主要由光源、单色器(分光镜)、吸收池、检测器和显示器五大部分组成。 光源:在整个紫外光区或可见光区可以发射连续光谱,具有足够的辐射强度、较好的稳定性、较长的使用寿命,可见光区常用的光源是钨灯或碘钨灯,波长范围是350-1000nm。在紫外区常为氢灯或氘灯,发射的连续波长范围是180-360nm。 单色器:是将光源辐射的复合光分成单色光的光学装置。它是分光光度计的心脏部分。单色器一般由狭缝、色散元件及透镜系统组成。关键是色散元件,*常见的色散元件是棱镜和光栅。 •狭缝:将单色器的散射光切割成单色光。直接关系到仪器的分辨率。狭缝越小,光的单色性越好。分为入射狭缝和出射狭缝。 •棱镜:175-2700nm的光能被分开,色散随波长变化,波长长色散差,材质主要有水晶和溶凝石英。 •光栅:色散在整个波长范围内是统一的。1个衍射光栅能获得宽波长。另外,用常量狭缝宽度能获得常量光谱。因此具有波长范围宽,色散均匀,分辨性能好,使用方便的优点。 样品池:用于盛装试液的装置。吸收材料必须能够透过所测光谱范围的光。一般可见光区使用玻璃吸收池,紫外光区使用较贵的石英吸收池。测量时要挑选配对,因为吸收池材料的本身吸光特性以及吸收池的光程长度的精度等参数对分析结果都有影响。 检测器:用光电效应将透过吸收池的光信号变成可测的电信号,常用的有光电管、光电倍增管、光电二极管、光电摄像管等。它的作用是充当在紫外和可见区有灵敏性的光电管和放大器的作用。要求灵敏度高、响应时间短、噪声水平低、稳定性好等性质。 显示器:将检测到的信号输出显示出来,能直观的对结果进行观看分析。 分光光度计的分类: 一般有可见分光光度计,紫外分光光度计,可见紫外分光光度计,红外分光光度计等。按仪器使用的光学系统还分为单光束、双光束、多波长光度计等。 单光束:经单色器分光后的一束平行光,轮流通过参比溶液和样品溶液,以进行吸光度的测定。这种光度计的特点是简单便宜适于在给定波长处测量吸光度或透光度,一般不能作全波段光谱扫描,要求光源和检测器具有很高的稳定性。 双光束:经单色器分光后经反射镜分解为强度相等的两束光,一束通过参比池,一束通过样品池。光度计能自动比较两束光的强度,此比值即为试样的透射比,经对数变换将它转换成吸光度并作为波长的函数记录下来。一般具备快速全波段扫描。可消除光源不稳定、检测器灵敏度变化等因素的影响,特别适合于结构分析。此种仪器操作复杂价格较高。 双波长:由同一光源发出的光被分成两束,分别经过两个单色器,得到两束不同波长的单色光;通过折波器以一定的频率交替通过同一样品池,然后由检测器交替接收信号,*后由显示器显示出两个波长处的吸光度差值从而扣除了背景吸收的吸光度,达到更精确的测量效果。

单色器是将光源发出的连续光谱分解成单色光,并能准确方便地“取出”所需要的某一波长的光的光学装置,它是光度计的心脏。单色器主要由狭缝、色散元件和透镜系统组成。其中色散元件是单色器的主要部件。最常用的色散元件是棱镜、光栅,或者是两者的组合。

分光光度法定义与应用1.1定义:分光光度法是利用物质所特有的吸收光谱来鉴别物质或测定其含量的分析检测技术. 1.2特点:灵敏,精确,快速和简便,在复杂组分系统中,不需要分离,即能检测出其中所含的极少量物质. 1.3应用:生物<>化学研究中广泛使用的方法之一,广泛用于糖,蛋白质,核酸,酶等的快速定量检测. 2.分光光度计的基本结构和工作原理2.1分光光度计的分类2.2分光光度计工作原理2.3分光光度计的基本结构2.4分光光度法的测量误差

新甫京娱乐 1

1.1. 钨灯

2.3分光光度计的基本结构无论哪一类分光光度计都包括:光源,单色器,吸收池,检测器和测量仪表.分光光度计各部件的次序如图所示: 5个基本部件分光光度计的基本部件(1): 光源:分光光度计上常用的光源有两种:钨丝灯或氢灯,在可见光区,近紫外光区和近红外光区常用钨丝灯作为光源;在紫外光区多使用氢弧灯. 单色器:把混合光波分解为单—波长光的装置.在分光光度计中多用作为色散元件. 吸收池比色杯,比色皿,比色池)一般由玻璃,石英或熔凝石英制成,用来盛被测的溶液.在低于350 nm的紫外光区工作时,必须采用石英池或熔凝石英池. 分光光度计的基本部件(2): 吸收池(比色皿)必须与光束方向垂直.此外,每套比色皿的质料,厚度应完全相同,以免产生误差.比色皿上的指纹,油污或壁上的沉积物都会显著地影响其透光性,因此在使用前务必彻底清洗. 常用光电池,光电管和光电倍增管三种. 测量装置—般常用的紫外光和可见光分光光度计有3种测量装置,即电流表,记录器和数字示值读数单元.现代的仪器常附有自动记录器,可自动描出吸收曲线. 检测器棱镜与光栅棱镜:光波通过棱镜时,不同波长的光折射率不同;因而能将不同波长的光分开.玻璃对紫外线的吸收力强,故玻璃棱镜多用于可见光分光光度计.石英棱镜可在整个紫外光区传播光,故在紫外光分光光度计中广为应用. 衍射光栅:在石英或玻璃表面上刻划许多平行线(每英寸约刻15 000—30 000条).由于刻线处不透光,通过光的干涉和衍射使较长的光波偏折角度大,较短的光波偏折角度小,因而形成光谱. 棱镜单色器装置示意图光源照到棱镜(或光栅)以前,先要经过一个入射狭缝,再通过平行光镜使成为平行光束投到棱镜上.透过棱镜的光再经另一聚光镜,在此聚光镜的焦面内可得一清楚的光谱图.如在焦线处放—出射狭缝,转动棱镜使光谱移动,就可以从出射狭缝射出所需要的单色光.整个装置称为"单色器" 检测器---光电池光电池装在一个特制的匣子里面由3层物质组成的圆形或长方形薄片.第一层是一种导电性良好的金属,这是光电池的负极.中间极薄的一层是半导体硒,第3层是铁,这是光电池的正极.当光电池受光照射以后,半导体硒的表面逸出电子,这些电子只向负极方向移动,而不向正极移动,因此在上下两金属片间产生一个电位差,线路连通时即产生电流

紫外可见分光光度计是目前世界上历史最悠久、使用最多、覆盖面最广的分析仪器之一。无论在物理学、化学、生物学、医学、材料学、环境科学等科学研究领域,还是在化工、医药、环境检测、冶金等现代生产与管理部门,紫外分光光度计都有广泛而重要的应用。下面,贤集网小编带您了解一下紫外分光光度计的基本结构及应用。

光源是提供符合要求的入射光的装置,紫外可见分光光度计可见光区常用的光源为钨灯,紫外光区常用的光源为氢灯或氘灯。

2.5显色反应及其影响因素2.1分光光度计的分类分光光度计的分类红外分光光度计:测定波长范围为大于760 nm的红外光区可见光分光光度计:测定波长范围为400~760 nm的可见光区紫外分光光度计:测定波长范围为200~400 nm的紫外光区2.2分光光度计工作原理人眼可见的光只占电磁波谱的很小—部分(400~760nm)它是一种频率较大的电磁波.电磁波按频率大小,从频率最小的无线电波到频率最大的γ-射线排成一列,即组成电磁波的波谱,如下图所示. 2.2.1分光光度计的光谱范围包括波长范围为400~760 nm的可见光区和波长范围为200~400 nm的紫外光区.不同的光源都有其特有的发射光谱,因此可采用不同的发光体作为仪器的光源. 钨灯的发射光谱:钨灯光源所发出的400~760nm波长的光谱,光通过三棱镜折射后,可得到由红,橙,黄,绿,蓝,靛,紫组成的连续色谱;该色谱可作为可见光分光光度计的光源. 氢灯的发射光谱:氢灯能发出185~400 nm波长的光谱,可作为紫外光光度计的光源.

1.紫外可见分光光度计的基本结构全世界的紫外-可见分光光度计生产厂家有上百家,产品型号成千上万,但就基本结构来说,都是由五个部分组成,即光源、单色器、吸收池、检测器和信号指示系统。如下图所示: 光源紫外可见分光光度计对光源的基本要求包括:①在仪器操作所需的光谱区域内能够发射连续辐射;②有足够的辐射强度和良好的稳定性,而且辐射能量随波长的变化应尽可能小。紫外可见分光光度计中常用的光源有热辐射光源和气体放电光源两类。热辐射光源用于可见光区,如钨丝灯和卤钨灯;钨灯和碘钨灯可使用的范围在340~2500nm,这类光源的辐射能量与施加的外加电压有关,在可见光区,辐射的能量与工作电压的4次方成正比。光电流也与灯丝电压的n次方成正比。因此必须严格控制灯丝电压,仪器必须备有稳压装置。气体放电光源用于紫外光区,如氢灯和氘灯。在近紫外区测定时常用氢灯和氘灯,它们可在160~375nm范围内产生连续光源。氘灯的灯管内充有氢的同位素氘,它是紫外光区应用最广泛的一种光源,其光谱分布与氢灯类似,但光强度比相同功率的氢灯要大3~5倍。单色器单色器是能从光源辐射的复合光中分出单色光的光学装置,其主要功能应该是能够产生光谱纯度高且波长在紫外可见区域内任意可调的单色光。单色器一般由入射狭缝、准直镜、色散元件、聚焦元件和出射狭缝等几部分组成。色器的性能直接影响入射光的单色性,从而也影响到测定的灵敏度、选择性及校准曲线的线性关系等。单色器的核心部分是色散元件,起分光的作用。色散元件主要是棱镜和光栅。棱镜常用的材料有玻璃和石英两种。它们的色散原理是依据不同波长光通过棱镜时有不同的折射率而将不同波长的光分开。由于玻璃可吸收紫外光,所以玻璃棱镜只能用于350~3200nm的波长范围,即只能用于可见光区域内。石英棱镜适用的波长范围较宽,可从185~4000nm,即可用于紫外、可见、近红外三个光域。光栅是利用光的衍射与干涉原理制成的。它可用于紫外、可见及近红外光域,而且在整个波长区具有良好的、几乎均匀一致的分辨能力。它具有色散波长范围宽、分辨本领高、成本低、便于保存和易于制备等优点。缺点是各级光谱会重叠而产生干扰。入射、出射狭缝,透镜及准直镜等光学元件中狭缝在决定单色器性能上起重要作用。狭缝的大小直接影响单色光纯度,但过小的狭缝又会减弱光强。吸收池吸收池用于盛放分析试样,一般有石英和玻璃材料两种。石英池适用于可见光区及紫外光区,玻璃吸收池只能用于可见光区。为减少光的反射损失,吸收池的光学面必须完全垂直于光束方向.在高精度的分析测定中,吸收池要挑选配对。因为吸收池材料的本身吸光特征以及吸收池的光程长度的精度等对分析结果都有影响。检测器检测器的功能是检测光信号、测量单色光透过溶液后光强度变化的一种装置,常用的检测器有光电池、光电管和光电倍增管等。它们通过光电效应将照射到检测器上的光信号转变成电信号。对检测器的要求:①在测定的光谱范围内具有高的灵敏度;②对辐射能量的响应时间短,线性关系好;③对不同彼长的辐射响应均相同,且可靠;④噪音低,稳定性好等。硒光电池对光的敏感范围为300~800nm,其中又以500~600nm最为灵敏。这种光电池的特点是能产生可直接推动微安表或检流计的光电流,但由于容易出现疲劳效应而只能用于低档的分光光度计中。光电管在紫外可见分光光度计上应用较为广泛。它的结构是以一弯成半圆柱形的金属片为阴极,阴极的内表面涂有光敏层,在圆柱形的中心置一金属丝为阳极,接受阴极释放出的电子。两电极密封于玻璃或石英管内并抽成真空。阴极上光敏材料不同,光谱的灵敏区也不同。可分为蓝敏和红敏两种光电管,前者是在镍阴极表面上沉积锑和艳,可用于波长范困为210~625nm;后者是在阴极表面上沉积了银和氧化艳。可用范围为625~1000nm。与光电池比较,它有灵敏度高、光敏范围宽、不易疲劳等优点。光电倍增管是检测微弱光最常用的光电元件,它的灵敏度比一般的光电管要高200倍,因此可使用较窄的单色器狭缝,从而对光谱的精细结构有较好的分辨能力。信号指示系统它的作用是放大信号并以适当方式指示或记录下来。早期常用的信号指示装置有直读检流计、电位调节指零装置以及数字显示或自动纪录装置等。现在很多型号的分光光度计都可配套计算机使用,一方面可对分光光度计进行操作控制,另一方面可进行数据处埋。2、紫外可见分光光度计的应用紫外可见分光光度计可作定量分析、纯度分析、参与结构分析、参与定性分析;特别在定量分析和纯度检查方面,在许多领域更是必备的分析仪器。例如,制药、食品、农业、化学化工、计量等行业中的产品质量控制,各级药检系统的产品质量检测等。定性分析紧外-可见分光光度法对无机元素的定性分析应用较少,无机元素的定性分析可用原子发射光谱法或化学分析的方法。在有机化合物的定性鉴定和结构分析中,由于紫外-可见光谱较简单,特征性不强,因此该法的应用也有一定的局限性。但是它适用于不饱和有机化合物。尤其是共轭体系的鉴定,以此推断未知物的骨架结构。此外,可配合红外光谱、核磁共振波谱法和质谱法进行定性鉴定和结构分析,因此它仍不失为是一种有用的辅助方法。一般有两种定性分析方法,比较吸收光谱曲线和用经验规则计算最大吸收波长λmax,然后与实测值进行比较。定量分析紫外-可见分光光度定量分析的依据是朗伯比尔定律,即在一定波长处被测定物质的吸光度与它的溶度呈线性关系。应此,通过测定溶液对一定波长入射光的吸光度可求出该物质在溶液中的浓度和含量。种常用的测定方法有:单组分定量法、多组分定量法、双波长法、示差分光光度法和导数光谱法等。化合物的鉴定利用紫外光谱可以推导有机化合物的分子骨架中是否含有共轭结构系统,如C=C-C=C,C=C-C=O,苯环等。配合物组成及其稳定常数的测定测量配合物组成的常用方法有两种:摩尔比法和等摩尔连续变化法。5.酸碱离解常数的测定光度法是测定分析化学中应用的指示剂或显色剂离解常数的常用方法,该法特别适用于溶解度较小的弱酸或弱碱。

光栅实现上就是一系列等宽、等距离的平行狭缝,它是利用光的衍射与干涉作用制成的。光栅作为色散元件具有不少独特的优点,光栅单色器的分辨率比棱镜单色器的分辨率高,可精确到0.2nm,而且可用的波长范围也比棱镜单色器的范围宽。所以,目前生产的紫外可见分光光度计大多采用光栅作为色散元件。

2.2.2物质的吸收光谱(1) 如果在光源和棱镜之间放上某种物质的溶液,此时在屏上所显示的光谱已不再是光源的光谱,它出现了几条暗线,即光源发射光谱中某些波长的光因溶液吸收而消失,这种被溶液吸收后的光谱称为该溶液的吸收光谱. 不同物质的吸收光谱是不同的.因此根据吸收光谱,可以鉴别溶液中所含的物质. 2.2.2物质的吸收光谱(2) 当光线通过某种物质的溶液时,透过的光的强度减弱.因为有一部分光在溶液的表面反射或分散,一部分光被组成此溶液的物质所吸收,只有一部分光可透过溶液. 入射光=反射光+分散光+吸收光+透过光如果我们用蒸馏水(或组成此溶液的溶剂)作为"空白"去校正反射,分散等因素造成的入射光的损失,则: 入射光=吸收光十透过光 2.2.3物质吸光度(A)与透射比(T)的关系设I0为经过空白校正后入射光的强度;I为透过光的强度. 根据实验得知I = I0 ?10-εc l 式中,c表示吸收物质的摩尔浓度;l表示吸收物质的光径,用cm表示;ε表示吸收物质的摩尔消光系数,它表示物质对光的吸收特性,不同物质的ε数值不同.所以I / I0 = 10-εc l 令T(透射比) = I / I 0 T = 10-εcl 若以T对吸收物质的浓度作图,则得图1-5-2中的曲线. 由上式可得1g(1 / T) =εc l lg(l / T)为物质的吸光度(A) A = 1g(1 / T) 2.2.4 Lambert -Beer定律( E =εc l) 上式说明了物质的吸光度与吸收物质的浓度和液层的厚度成正比,这就是光吸收的基本定律--Lambert-Beer(朗伯-比耳)定律.

一、光源

2.5显色反应及其影响因素显色反应及其影响因素显色反应一般要求影响显色反应因素选择性好灵敏度高生成的有色化合物性质稳定显色剂与有色物颜色反差大显色反应要易于控制显色剂用量反应液的酸碱度(pH) 反应温度显色反应时间干扰离子的影响2.5.1显色反应一般要求(1)选择性好:显色剂最好只与一种被测组分起显色反应; (2)灵敏度高:灵敏度高有笪微量组分的测定; (3)有色化合物性质稳定:确保前后测定准确. (4)显色剂与有色物颜色反差大:两者最大吸收波长之差应大于60nm; (5)显色反应要易于控制:结果的确保实验再现性. 2.5.2影响显色反应的主要因素(1)显色剂用量:通过实验来确定最适用量; (2)反应液的酸碱度(pH)溶液酸碱度直接影响金属离子与显色剂存在形式以及有色化合物组成的稳定性. (3)反应温度:不同的显色反应需要不同的反应温度,一般显色反应可在室温下完成. (4)显色反应时间:显色反应的速度有快有慢. (5)干扰离子的影响:应采用适当方法消除其影响.