发布时间:15-02-04 11:21分类:技术文章 标签:高压输电系统 电能从生产到消费一般要经过发电、输电、配电和用电四个环节。对于下图所示的简单电力系统而言,首*是发电环节,这个环节是在发电厂完成的。由于发电机绝缘条件的限制,发电机的*高电压一般在22kV及以下。其次是输电环节,输电系统是将发电厂发出的电能输送到消费电能的地区(也称负荷中心),或进行相邻电网之间的电能互送,使其形成互联电网或统一电网。为了降低线路的电能损耗、增大电能输送的距离,发电厂发出的电能通常需要通过升高电压才能接入不同电压等级的输电系统。第三是配电环节,配电系统*是将来自高压电网的电能以不同的供电电压分配给各个电力用户。*后是用电环节,电力用户根据不同的能量需求通常采用中、低压供电和消费。如下图所示,在电力系统中,需要多次采用升压或降压变压器对电压进行变换,也*是说在电力系统中采用了很多不同的电压等级。 图1简单电力系统示意图 输电系统的电压等级一般分为高压、超高压和特高压。在国际上,对于交流输电系统,通常把35~220kV的输电电压等级称为高压(HV),把330~750(765)kV的输电电压等级称为超高压(EHV),而把1000kV及以上的输电电压等级通称为特高压(UHV)。另外,一般把±500kV电压等级的直流输电系统称为高压直流输电系统(HVDC)。对我国目前绝大多数交流电网来说,高压电网指的是110kV和220kV电压等级的电网,超高压电网指的是330kV、500kV和750kV电压等级的电网,特高压电网指的是正在建设的1000kV交流电压等级和±800kV直流电压等级的输电系统。在同一个电网中采用了不同的电压等级,这些电压等级组成该电网的电压序列。目前,我国除了西北电网外,大部分电网的电压序列是500/220/110/35/10/0.38kV,西北电网的电压序列分别为750/330/110/35/10/0.38kV和220/110/35/10/0.38kV。电能送到负荷中心后经过地区变电站降压到10kV,然后再由10kV配电线路输送到配电变压器,*后经过配电变压器将电压变成0.38kV供电力用户使用。对于单相用户,其相电压*是民用220V交流电。输电系统之所以要采用这么多的电压等级,其原因主要有以下几点。 在1949年之前,我国电力工业发展缓慢,输电线路建设同样迟缓,输电电压按具体工程决定。因而,我国当时的电压等级繁多。1908~1943年,建成了22、33、44、66、110kV和154kV等电压等级的输电线路。1949年以后,才开始按电网发展规划统一电压等级,之后逐渐形成了经济合理的电压等级序列。每一个电压等级的建立都应以满足其投入后20~30年大功率电能的输送需求为基准。1981年以前,我国主要以220kV电压等级的电网为骨干网架。1981年以后,随着我国*条500kV交流输电系统(平武线)的建成,已经形成了以500kV电压等级为主要网架的超高压电网。目前,面临大规模、远距离输电以及*联网的需要,我国正在进行1000kV交流和±800kV直流特高压输电试验示范工程的建设,并建立了用于深入研究的特高压试验研究基地。 其次,学过物理的人们都知道,对于一个电阻系统,其电功率S计算公式为:S=U2/R。式中,U为施加在该电阻系统的电压,R为该电阻系统的等效电阻。根据上述公式,可以定性地看出,当电阻一定时输送功率与输电电压的平方成正比。如果输电电压提高1倍,输送功率将提高4倍。电网的发展历史表明,各国在选择更高一个电压等级时,通常使相邻两个输电电压之比等于2,多数是大于2。这样做可以使输电系统的输送功率提高4倍以上。从电网的发展过程看,输电电压等级大约也是以两倍的关系增长的。当发电量增至4倍左右时,即出现一个新的更高的电压等级。实践证明,以这样的电压等级差构成的电网才可能经济合理,并适应电网的发展和服务区域范围的扩大。 第三,不断增长的用电需求促进了火力、水力和核电等发电技术向单位(千瓦)造价低、效率高的大型、特大型发电机组方向发展,而可用于大规模发电的能源基地在地理分布以及社会经济发展的历史又形成了电源和电力负荷地理分布上的不平衡。在电力负荷中心地区,由于经济发展较快,导致用电需求增长也快,但是在这些地区却往往缺乏一次能源。而在一次能源丰富的地区,如矿物燃料、水力资源的地区,其经济发展相对较慢,用电增长相对较低或人均用电水平较低。这种一次能源分布和需求的不平衡情况增加了远距离、大容量输电和电网互联的需求。在电压等级不变的情况下,远距离输电意味着线路电能耗损的增加。因此,根据输电线路的长度不同,需要选择的电压等级也不同。当输送电能的功率给定后,提高输电线路的电压等级将降低输电线路的电流,从而减少有功功率和无功功率在输电线路上的电能损耗。另外,提高输电线路的电压等级不仅可以增大输电容量,而且降低输电系统的成本、增加输电线路的走廊利用率。但是,随着输电线路电压等级的提高,虽然输电线路的损耗减小了,可是相应的投资也随之增长。一般通过理论计算和一些经验数据来确定两者之间的*佳结合点,来*终决定输电线路的输电电压等级、*大输送功率和输送距离。下表中列出了现有不同输电线路电压等级与输送容量、输送距离的大致范围。 输电电压(kV) 输送容量(MW) 输送距离(km) 110 10~50 50~150 220 100~500 100~300 330 200~800 200~600 500 1000~1500 150~850 765 2000~2500 500以上 表1输电电压与输送容量、输送距离的范围 综上所述,尽管高压输电系统采用不同的电压等级有着多方面的原因,但是要遵循如下几条基本原则:①在遵守*电压标准、依照电网电压序列和考虑电网发展的前提下,选择有利于提高全电网经济效益的适当的电压等级;②要从全电网出发,权衡全电网的经济效益,而不是仅仅局限于某输电线路工程的经济效益;③要兼顾规模效益和时间效益。

1、电力系统:由各级高压的电力线路,将各种发电厂、变电所和电力用户联系起来的一个发电、输电、配电和用电的整体。

1月27日上午,华东电网基建工程人员正抓紧开展500千伏练塘-泗泾输电线路的放线工作,为未来直接承接特高压电网的电力送入上海打下基础。据规划,华东电网将形成沪苏浙皖特高压受端环网,并通过四个特高压通道接受区外来电,同时特高压网架将覆盖华东电网四省一市。到2015年,上海将有近三成的电力来自清洁、高效、优质的特高压电网。

电力系统和输电规模的扩大,世界高新技术的发展,推动了特高压输电技术的研究。从本世纪60年代开始,前苏联、美国、日本和意大利等国,先后进行基础性研究、实用技术研究和设备研制,已取得了突破性的研究成果,制造出成套的特高压输电设备。前苏联已建成额定电压1150kV的交流输电线路1900多公里并有900公里已经按设计电压运行;日本已建成额定电压l0OOkV(最高运行电压llOOkV)的同杆双回输电线路426公里。百万伏级交流线路单回的输送容量超过5000MW,且具有明显的经济效益和可靠性,作为中、远距离输电的基干线路,将在电网的建设和发展中起重要的作用。 特高压输电技术的复杂性以及它在电力系统中的作用,是现有电压等级无法相比的,因此无论是基础研究,还是实用技术研究,所投入的资金和人力比超高压要大得多,设备的研制也要困难得多。日本和前苏联的实践表明:特高压交流输电技术已基本成熟。交流特高压技术几乎没有难以克服的技术问题。从输变电设备制造技术上,前苏联已基本成熟,但技术水平相对落后;日本已经达到国际领先水平,并经历了长达5年的带电试验考核,目前变电设备处于分别载流和加压试验阶段,但输电线路一直降压运行。 随着经济的全球化趋势和科学技术的迅速发展,我国的电力系统也将面临着巨大的挑战和机遇。在未来的15~20年内我国的电力工业将保持快速发展的步伐,预计全国电力装机容量在2010年和2020年将分别达到780GW和1000GW。由于我国能源和负荷分布的特点,能源集中在西部和北部地区,而负荷又集中在东部和南部沿海地区,需要利用特高压进行远距离、大容量输送电力。为加速实现西电东送、南北互供和全国联网,从战略发展的高度,将首先在我国西南水电和西北火电基地的开发建设中出现我国的特高压输电电网。按自然传输功率计算,1条特高压线路的传输功率相当于4~5条500kV超高压线路的传输功率,这将节约宝贵的输电走廊和大大提升我国电力工业可持续发展的能力。我国在特高压领域已经开展一定科研及设备研制的基础工作,积累了一些经验。特高压输电技术包括设备研制、线路绝缘设计以及运行控制技术是在超高压输电尤其是500kV和750kV输电技术基础上发展起来的。然而,特高压输电系统的电压水平较高、线路产生的无功功率较大、短路电流非周期分量衰减缓慢,对特高压输电的设计和运行产生影响。 在我国特高压制造技术虽然具备一定的基础,但仍有一些技术尚需要解决。国际上特高压输变电技术基本掌握在少数几个国家手中,我国需要加大科研工作力度,努力掌握核心技术。另外一方面,近几年,随着我国750kV输电工程的建成,相对于特高压输电技术,应该说发展特高压设备制造能力及技术应该会更快一些。我国的电气设备制造水平和工艺随着750kV工程的上马,有了新的发展和进步,不少企业已具备制造特高压设备的技术条件和生产能力,只要工程需要,研制特高压输变电设备是可能的。预计2008年前后建成我国第一条1000kV特高压交流试验示范工程,到2010年前后国家电网特高压骨干网架将初步形成,但国家电网特高压骨干网架建设是一个逐步完善的过程。 技术经济比较研究表明:在我国发展特高压交流输电是可行的。从技术的角度看,采用特高压输电技术是实现提高电网输电能力的主要手段之一,还能够取得减少占用输电走廊、改善电网结构等方面的优势;从经济方面的角度看,根据目前的研究成果,输送10GW水电条件下,与其它输电方式相比,特高压交流输电有竞争力的输电范围能够达到1000~1500公里。如果输送距离较短、输送容量较大,特高压交流的竞争优势更为明显。因此,特高压交流输电技术己较成熟,具备应用条件。

特高压是世界上最先进的输电技术。

2、大型电力系统具有强大的调频和调压能力,以及较大的低于谐波的能力,从而可以有效提高电能质量。

截至去年底,我国自主研究、设计和建设的向家坝-上海800千伏特高压直流输电示范工程已安全稳定运行近半年,向华东电网输送电量58.91亿千瓦时,上海受电23.1亿千瓦时。向家坝-上海800千伏特高压直流输电示范工程则是世界上输送容量最大、送电距离最远、技术水平最先进、电压等级最高的直流输电工程,其输送能力达到700万千瓦级,每年可向上海输送350亿千瓦时清洁水电,相当于上海全年用电量的30%。

电能的输送由升压变压器、降压变压器及其相连的输电线路完成。所有输变电设备连接起来构成输电网,所有配电设备连接起来构成配电网。输电网和配电网统称为电网。

3、交流特高压输电网一般指1000kv及以上电压电网。

据了解,十二五期间,国家电网将把特高压发展作为重中之重,建设联接大型能源基地与主要负荷中心的三纵三横特高压骨干网架和13项直流输电工程,形成大规模西电东送、北电南送的能源配置格局。到2015年,华东电网全社会装机、用电量和最高用电负荷将分别达到2.86亿千瓦、1.45万亿千瓦时和2.53亿千瓦,将分别比2010年增长36%、50%和52%。十二五期间,华东电网将新建500千伏变电容量1.31亿千伏安,线路长度1.03万公里,分别比十一五末期增长69%和43%。

电能的远距离输送分交流输电与直流输电两种形式。交流输电电压在国际上分为高压、超高压和特高压。高压通常指35~220千伏的电压;超高压通常指330千伏及以上、1000千伏以下的电压;特高压指1000千伏及以上的电压。在我国,高压直流指的是±660千伏及以下直流系统,特高压直流指的是±800千伏及以上直流系统。

4、近年来20kv中压配电系统在我国开始采用,20kv中压配电有以下优越性:

到2015年,上海特高压电网和500千伏电网通过4个通道相连,2座500千伏从环网深入中心城区。届时,上海将有近三成的电力来自清洁、高效、优质的特高压电网。

特高压电网通常指的是以1000千伏输电网为骨干网架,超高压输电网和高压输电网以及特高压直流输电、高压直流输电和配电网构成的分层分区、结构清晰的现代化大电网。

(1)提高了中压配电系统容量当20kv取代10kv中压配电电压,原来线路导线线径不变,则升压后的配电容量可以提高一倍。

相关链接

特高压电网具有输送容量大、送电距离长、线路损耗低、占用土地少等优点。建设特高压电网能把中国电网坚强地连接起来,使建在不同地点的不同发电厂(比如火电厂和水电厂之间)能互相支援和补充,工程上叫“实现水火互济,取得联网效益”;能促进西部煤炭资源、水力资源的集约化开发,降低发电成本;能保证中东部地区不断增长的电力需求,减少在人口密集、经济发达地区建火电厂所带来的环境污染;同时也能促进西部资源密集、经济欠发达地区的经济社会和谐发展。

(2)降低了线路上的电压损失在负荷不变的情况下,20kv的电压损失只有10kv的25%;在负荷升高1倍时,电压损失只有10kv的50%。

输电电压一般分高压、超高压和特高压。从我国目前绝大多数电网来看,高压电网指的是110kV和220kV电网;超高压电网指的是330kV、500kV和750kV电网;特高压电网,指1000kV的交流或800kV的直流电网。特高压输电具有容量大、距离远、能耗低、占地少、运行可靠和经济性好等优势。目前输送到上海的特高压电力,是以清洁的水电发电为主,替代了原先以煤、天然气为主的火电发电。